Acceptability of Printed Boards
The Principles of Standardization

In May 1995 the IPC’s Technical Activities Executive Committee (TAEC) adopted Principles of Standardization as a guiding principle of IPC’s standardization efforts.

Standards Should:
- Show relationship to Design for Manufacturability (DFM) and Design for the Environment (DFE)
- Minimize time to market
- Contain simple (simplified) language
- Just include spec information
- Focus on end product performance
- Include a feedback system on use and problems for future improvement

Standards Should Not:
- Inhibit innovation
- Increase time-to-market
- Keep people out
- Increase cycle time
- Tell you how to make something
- Contain anything that cannot be defended with data

Notice

IPC Standards and Publications are designed to serve the public interest through eliminating misunderstandings between manufacturers and purchasers, facilitating interchangeability and improvement of products, and assisting the purchaser in selecting and obtaining with minimum delay the proper product for his particular need. Existence of such Standards and Publications shall not in any respect preclude any member or nonmember of IPC from manufacturing or selling products not conforming to such Standards and Publication, nor shall the existence of such Standards and Publications preclude their voluntary use by those other than IPC members, whether the standard is to be used either domestically or internationally.

Recommended Standards and Publications are adopted by IPC without regard to whether their adoption may involve patents on articles, materials, or processes. By such action, IPC does not assume any liability to any patent owner, nor do they assume any obligation whatever to parties adopting the Recommended Standard or Publication. Users are also wholly responsible for protecting themselves against all claims of liabilities for patent infringement.

IPC Position Statement on Specification Revision Change

It is the position of IPC’s Technical Activities Executive Committee that the use and implementation of IPC publications is voluntary and is part of a relationship entered into by customer and supplier. When an IPC publication is updated and a new revision is published, it is the opinion of the TAEC that the use of the new revision as part of an existing relationship is not automatic unless required by the contract. The TAEC recommends the use of the latest revision. Adopted October 6, 1998

Why is there a charge for this document?

Your purchase of this document contributes to the ongoing development of new and updated industry standards and publications. Standards allow manufacturers, customers, and suppliers to understand one another better. Standards allow manufacturers greater efficiencies when they can set up their processes to meet industry standards, allowing them to offer their customers lower costs.

IPC spends hundreds of thousands of dollars annually to support IPC’s volunteers in the standards and publications development process. There are many rounds of drafts sent out for review and the committees spend hundreds of hours in review and development. IPC’s staff attends and participates in committee activities, typesets and circulates document drafts, and follows all necessary procedures to qualify for ANSI approval.

IPC’s membership dues have been kept low to allow as many companies as possible to participate. Therefore, the standards and publications revenue is necessary to complement dues revenue. The price schedule offers a 50% discount to IPC members. If your company buys IPC standards and publications, why not take advantage of this and the many other benefits of IPC membership as well? For more information on membership in IPC, please visit www.ipc.org or call 847/597-2809.

Thank you for your continued support.

©Copyright 2020. IPC International, Bannockburn, Illinois, USA. All rights reserved under both international and Pan-American copyright conventions. Any copying, scanning or other reproduction of these materials without the prior written consent of the copyright holder is strictly prohibited and constitutes infringement under the Copyright Law of the United States.
Acceptability of Printed Boards

Developed by the IPC-A-600 Task Group (7-31a) of the Product Assurance Committee (7-30) of IPC

Users of this publication are encouraged to participate in the development of future revisions.

Contact:

IPC
3000 Lakeside Drive, Suite 105N
Bannockburn, Illinois
60015-1249
Tel 847 615.7100
Fax 847 615.7105

Supersedes:
IPC-A-600J - May 2016
IPC-A-600H - April 2010
IPC-A-600G - July 2004
IPC-A-600F - November 1999

If a conflict occurs between the English and translated versions of this document, the English version will take precedence.
Any document involving a complex technology draws material from a vast number of sources across many continents. While the principal members of the A-600 Task Group (7-31a) of the Product Assurance Committee (7-30) are shown below, it is not possible to include all of those who assisted in the evolution of this standard. To each of them, the members of IPC extend their gratitude. Special thanks goes to the members of the Rigid Printed Board Committee (D-30) for their efforts in establishing acceptance criteria for printed boards.

Product Assurance Committee
- Chair: Robert Cooke
- Vice-Chair: Debbie Wade
- Technical Liaison of the IPC Board of Directors: Bob Neves
- Advanced Rework Technology-A.R.T

IPC-A-600 Task Group
- Co-Chair: Scott Bowles
- Co-Chair: Denise Charest
- Herb Girtz, Holaday Circuits Inc.
- Constantino Gonzalez, ACME Training & Consulting
- Pierre-Emmanuel Goutorbe, Airbus Defence & Space
- Vicka Hammill, Honeywell Inc. Air Transport Systems
- Hardeep Heer, FTG Circuits
- Frank Huizmans, PIEK International Education Centre
- Henrik Jensen, Gaasdal Bygningsindustri A/S
- Joseph Kane, BAE Systems
- Allen Keeney, Johns Hopkins University
- Maan Kokash, BAE Systems
- Nick Koop, TTM Technologies
- Kelly Kusiak, Lockheed Martin Corporation
- Meredith LaBeau, Calumet Electronics Corp.
- Jeremy Lakoskey, Honeywell International
- Leo Lambert, EPTAC Corporation
- Christina Landon, NSWC Crane
- David Lee, BMK Professional Electronics Gmbh
- Minsu Lee, Korea Printed Circuit Association
- Peggy LeGrand, TTM Technologies
- Andrew Leslie, BAE Systems

Technical Liaison of the IPC Board of Directors
- Bob Neves
- Microtek (Changzhou) Laboratories

Acknowledgment

IPC-A-600K
July 2020
A special note of thanks goes to Curtis Ricotta of Lockheed Martin Space Systems Company and Denise Charest of Amphenol Printed Circuits, Inc. for supplying a significant amount of new photographs for this revision.
Table of Contents

Acknowledgment ... iii

1 Introduction ... 1

1.1 Scope ... 1

1.2 Purpose ... 1

1.3 Approach To This Document .. 1

1.4 Classification ... 1

1.5 Acceptance Criteria ... 2

1.6 Applicable Documents .. 3

1.6.1 IPC ... 3

1.6.2 American Society of Mechanical Engineers 4

1.7 Dimensions and Tolerances .. 4

1.8 Terms and Definitions .. 4

1.9 Revision Level Changes ... 4

1.10 Workmanship ... 4

2 Externally Observable Characteristics 5

2.1 Printed Board Edges ... 5

2.1.1 Burrs .. 5

2.1.1.1 Nonmetallic Burrs .. 6

2.1.1.2 Metallic Burrs ... 7

2.1.2 Nicks ... 8

2.1.3 Haloing ... 9

2.2 Base Material Surface .. 10

2.2.1 Weave Exposure ... 11

2.2.2 Weave Texture .. 12

2.2.3 Mechanically Induced Disrupted Fibers 13

2.2.4 Surface Voids .. 14

2.3 Base Material Subsurface ... 15

2.3.1 Measling ... 20

2.3.2 Crazing ... 22

2.3.3 Delamination/Blister .. 25

2.3.4 Foreign Inclusions ... 28

2.4 Solder Coatings and Fused Tin Lead 30

2.4.1 Nonwetting .. 30

2.4.2 Dewetting .. 31

2.5 Holes – Plated-Through – General 33

2.5.1 Nodules/Rough Plating .. 33

2.5.2 Pink Ring ... 34

2.5.3 Voids – Copper Plating .. 35

2.5.4 Voids – Finished Coating ... 36

2.5.5 Lifted Lands – (Visual) ... 37

2.5.6 Cap Plating of Filled Holes – (Visual) 38

2.5.7 Back-Drilled Holes – (Visual) 40

2.6 Holes – Unsupported ... 42

2.6.1 Haloing ... 42

2.7 Edge Board Contacts .. 43

2.7.1 Surface Plating – Printed Board Edge Connector Lands 43

2.7.1.1 Surface Plating – Edge Connector Lands (Gap/Overlap Area) 45

2.7.2 Burrs on Edge-Board Contacts 46

2.7.3 Adhesion of Overplate ... 47

2.8 Marking ... 49

2.8.1 Etched Marking ... 50

2.8.2 Ink Marking ... 52

2.9 Solder Mask ... 54

2.9.1 Coverage Over Conductors (Skip Coverage) 55

2.9.2 Registration to Holes (All Finishes) 56

2.9.3 Registration to Rectangular Surface Mount Lands 57

2.9.3.1 Registration to Round Surface Mount Lands (BGA) – Solder Mask-Defined Lands 58

2.9.3.2 Registration to Round Surface Mount Lands (BGA) – Copper-Defined Lands 59

2.9.3.3 Registration to Round Surface Mount Lands (BGA) – (Solder Dam) 60

2.9.4 Blisters/Delamination ... 61

2.9.5 Adhesion (Flaking or Peeling) 63

2.9.6 Waves/Wrinkles/Ripples ... 64

2.9.7 Tenting (Via Holes) .. 65

2.9.8 Soda Strawing .. 66

2.10 Pattern Definition – Dimensional 68

2.10.1 Conductor Width and Spacing 68

2.10.1.1 Conductor Width ... 69

2.10.1.2 Conductor Spacing ... 70

2.10.2 External Annular Ring – Measurement 71

2.10.3 External Annular Ring – Supported Holes and Microvia Capture Land 72

2.10.4 External Annular Ring – Unsupported Holes 74

2.10.5 Surface Plating – Rectangular Surface Mount Lands 75

2.10.6 Surface Plating – Round Surface Mount Lands (BGA) 77

2.10.7 Surface Plating – Wire Bond Pads 79

2.11 Flatness ... 81
Table of Contents (cont.)

4.1.8.2 Laminate Integrity – Rigid-Flex Printed Board 171
4.1.9 Etchback (Type 3 and Type 4 Only) ... 172
4.1.10 Smear Removal (Type 3 and 4 Only) .. 173
4.1.11 Trimmed Edges/Edge Delamination ... 174
4.1.12 Silver Film Integrity ... 176

4.2 Metal Core Printed Boards .. 178
 4.2.1 Type Classifications .. 179
 4.2.2 Spacing Laminated Type .. 180
 4.2.3 Insulation Thickness, Insulated Metal Substrate 181
 4.2.4 Insulation Material Fill, Laminated Type Metal Core 182
 4.2.5 Cracks in Insulation Material Fill, Laminated Type 183
 4.2.6 Core Bond to Plated-Through Hole Wall 184

4.3 Flush Printed Boards ... 185
 4.3.1 Flushness of Surface Conductor ... 185

5 Cleanliness Testing ... 186
5.1 Solderability Testing .. 187
 5.1.1 Plated-Through Holes (Applicable to Solder Float Test) 188

5.2 Electrical Integrity ... 190
1 INTRODUCTION

Introduction

1.1 SCOPE
This document describes the target, acceptable, and nonconforming conditions that are either externally or internally observable on printed boards. It represents the visual interpretation of minimum requirements set forth in various printed board specifications, e.g.; IPC-6010 series, J-STD-003, etc.

1.2 PURPOSE
The visual illustrations in this document portray specific criteria of the requirements of current IPC specifications. In order to properly apply and use the content of this document, the printed board should comply with the design requirements of the applicable IPC-2220 series document and the performance requirements of the applicable IPC-6010 series document. In the event the printed board does not comply with these or equivalent requirements, then the acceptance criteria should be as agreed between user and supplier (AABUS).

1.3 APPROACH TO THIS DOCUMENT
Characteristics are divided into two general groups:

- Externally Observable (section 2)
- Internally Observable (section 3)

“Externally observable” conditions are those features or imperfections which can be seen and evaluated on or from the exterior surface of the board. In some cases, such as voids or blisters, the actual condition is an internal phenomenon and is detectable from the exterior.

“Internally observable” conditions are those features or imperfections that require microsectioning of the specimen or other forms of conditioning for detection and evaluation. In some cases, these features may be visible from the exterior and require microsectioning in order to assess acceptability requirements.

Specimens should be illuminated during evaluation to the extent needed for effective examination. The illumination should be such that no shadow falls on the area of interest except those shadows caused by the specimen itself. It is recommended that polarization and/or dark field illumination be employed to prevent glare during the examination of highly reflective materials.

The illustrations in this document portray specific criteria relating to the heading and subheading of each page, with brief descriptions of the acceptable and nonconforming conditions for each product class. The visual quality acceptance criteria are intended to provide proper tools for the evaluation of visual anomalies. The illustrations and photographs in each situation are related to specific requirements. The characteristics addressed are those that can be evaluated by visual observation and/or measurement of visually observable features.

Supported by appropriate user requirements, this document should provide effective visual criteria to quality assurance and manufacturing personnel.

This document cannot cover all of the reliability concerns encountered in the printed board industry; therefore, attributes not addressed in this issue shall be AABUS. The value of this document lies in its use as a baseline document that may be modified by expansions, exceptions, and variations which may be appropriate for specific applications.

When making accept and/or reject decisions, the awareness of documentation precedence must be maintained.

This document is a tool for observing how a product may deviate due to variation in processes. Refer to IPC-9191.

IPC-A-600 provides a useful tool for understanding and interpreting Automated Inspection Technology (AIT) results. AIT may be applicable to the evaluation of many of the dimensional characteristics illustrated in this document.

IPC-9121 is a useful troubleshooting guideline for problems, causes and possible corrective actions related to printed board manufacturing processes.

1.4 CLASSIFICATION
This standard recognizes that electrical and electronic products are subject to classifications by intended end-item use. Three general end-product classes have been established to reflect differences in producibility, complexity, functional performance requirements, and verification (inspection/test) frequency. It should be recognized that there may be overlaps of product between classes.
3.2 CONDUCTIVE PATTERNS – GENERAL

3.2.5 Solder Mask Thickness

Target Condition/Acceptable – Class 1, 2, 3
- Specified: The solder mask thickness meets the thickness requirements on the procurement documentation (cannot be visually assessed).

Nonconforming – Class 1, 2, 3
- Observed conditions do not meet procurement documentation requirements.

Figure 325a
Note 1: Tmin, if specified.

Figure 325b

Figure 325c

Figure 325d

Visual observations made on cross-sections only.
3.3 PLATED-THROUGH HOLES – GENERAL

3.3.5 Innerlayer Inclusions

Target Condition – Class 1, 2, 3
- No inclusions present.

Acceptable – Class 2, 3
- No inclusions evident.

Acceptable – Class 1
- Inclusions(s) on one side of hole wall at each land location on no more than 20% of each available land.

Nonconforming – Class 1, 2, 3
- Observed conditions either do not meet or exceed above criteria.

Visual observations made on cross-sections only.
4.1.7 Solder Wicking/Plating Penetration Under Coverlay

Target Condition – Class 1, 2, 3
- Solder or plating on land covers all exposed metal and stops at coverlay.
- Solder wicking or plating penetration does not extend into the bend or flex transition area.

Acceptable – Class 3
- Solder wicking/plating penetration does not extend under coverlay more than 0.3 mm [0.0118 in].
- Solder wicking or plating penetration does not extend into the bend or flex transition area.
- Meets conductor spacing requirements.

Acceptable – Class 2
- Solder wicking/plating penetration does not extend under coverlay more than 0.5 mm [0.0197 in].
- Solder wicking or plating penetration does not extend into the bend or flex transition area.
- Meets conductor spacing requirements.

Acceptable – Class 1
- Solder wicking/plating penetration AABUS.
- Solder wicking or plating penetration does not extend into the bend or flex transition area.
- Meets conductor spacing requirements.

Nonconforming – Class 1, 2, 3
- Observed conditions do not meet or exceed above criteria.
This section shows the voids and cracks that may be present in flexible or rigid-flex printed boards. The requirements for the flexible portion differ from the rigid-flex portion and are defined in the text even though only a rigid-flex section is shown.

Figure 418a

Note 1: Thermal zones are defined by a 0.08 mm [0.0031 in] perimeter around the entirety of each via or through-hole structure (including internal and external lands). For lands that are increased in size to accommodate an offset (staggered) structure, the thermal zone is governed by the offset (staggered) structure.
Note 2: Rigid Printed Board Area.
Note 3: Flexible Printed Board Area.
Note 4: Plating.
Note 5: Copper Foil.
Note 6: Laminate voids and cracks fully encapsulated within the thermal zones are not evaluated on specimens which have been exposed to thermal stress or rework simulation.
Note 7: Multiple voids or cracks between PTHs in the flex area and in the same plane shall not have a combined length exceeding the limit.

Target Condition – Class 1, 2, 3

- No laminate voids or cracks.
5.1 SOLDERABILITY TESTING

5.1.1 Plated-Through Holes (Applicable to Solder Float Test)

Target Condition – Class 1, 2, 3
- Solder has risen in all plated holes.
- There is no nonwetted or exposed base metal.

Acceptable – Class 3
(for printed boards of thickness \(\leq 3.0\ \text{mm} \) [0.118 in])
- Solder has risen in all plated holes.
- Solder fully wets the walls of the hole.
- There is no evidence of nonwetting or exposed base metal on any PTH.

Acceptable – Class 1, 2
(for printed boards of thickness \(\leq 3.0\ \text{mm} \) [0.118 in])
- Solder fully wets the wall area of the PTH holes.
- Solder shall plug holes less than 1.5 mm [0.0591 in] diameter (complete filling is not necessary).

Acceptable – Class 2, 3
(for printed boards of thickness > 3.0 mm [0.118 in])
- Hole fill \(\geq 75\% \).
5.1.1 Plated-Through Holes (Applicable to Solder Float Test) (cont.)

Acceptable – Class 1
(for printed boards of thickness > 3.0 mm [0.118 in])
• Hole fill ≥ 50%.

Nonconforming – Class 1, 2, 3
(for printed boards of thickness ≤ 3.0 mm [0.118 in])
• Observed conditions do not meet or exceed above criteria.

Nonconforming – Class 1, 2, 3
(for printed boards of thickness > 3.0 mm [0.118 in])
• Observed conditions do not meet or exceed above criteria.
版权等原因，不能全部发布。
此为样本文件，如需更多交流：

www.stdpdf.com
www.file123.top
1395833280@qq.com
微信：IPCSTD

![QR Code]
The purpose of this form is to keep current with terms routinely used in the industry and their definitions. Individuals or companies are invited to comment. Please complete this form and return to:

IPC
3000 Lakeside Drive, Suite 105N
Bannockburn, IL 60015-1249
Fax: 847 615.7105

☐ This is a NEW term and definition being submitted.
☐ This is an ADDITION to an existing term and definition(s).
☐ This is a CHANGE to an existing definition.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If space not adequate, use reverse side or attach additional sheet(s).

Artwork: ☐ Not Applicable ☐ Required ☐ To be supplied
☐ Included: Electronic File Name: ________________________________

Document(s) to which this term applies: ________________________________
__
__

Committees affected by this term:
__
__

<table>
<thead>
<tr>
<th>Office Use</th>
<th>Committee 2-30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date Received: ____________________</td>
<td>Date of Initial Review: ____________________</td>
</tr>
<tr>
<td>Comments Collated: __________________</td>
<td>Comment Resolution: ____________________</td>
</tr>
<tr>
<td>Returned for Action: __________________</td>
<td>Committee Action: ☐ Accepted ☐ Rejected ☐ Accept Modify</td>
</tr>
<tr>
<td>Revision Inclusion: __________________</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IEC Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terms and Definition Committee Final Approval Authorization:</td>
</tr>
<tr>
<td>Committee 2-30 has approved the above term for release in the next revision.</td>
</tr>
<tr>
<td>Name: ____________________ Committee: IPC 2-30 Date: ____________________</td>
</tr>
</tbody>
</table>
Standard Improvement Form

The purpose of this form is to provide the Technical Committee of IPC with input from the industry regarding usage of the subject standard.

Individuals or companies are invited to submit comments to IPC. All comments will be collected and dispersed to the appropriate committee(s).

If you can provide input, please complete this form and return to:

IPC
3000 Lakeside Drive, Suite 105N
Bannockburn, IL 60015-1249
Fax: 847 615.7105
E-mail: answers@ipc.org
www.ipc.org/standards-comment

1. I recommend changes to the following:

 ___ Requirement, paragraph number __________
 ___ Test Method number __________, paragraph number __________

 The referenced paragraph number has proven to be:
 ___ Unclear ___ Too Rigid ___ In Error
 ___ Other __________

2. Recommendations for correction:

 __
 __
 __

3. Other suggestions for document improvement:

 __
 __
 __
 __

Submitted by:

Name ___________________________ Telephone __________

Company _________________________ E-mail __________

Address __

City/State/Zip ____________________ Date __________
Experience the Benefits of Joining the Electronics Industry’s Premier Association

Expand your company’s resources and influence in the electronics industry.

- Stay Current
- Get Connected
- Shape the Industry
- Train Your Staff
- Contain Costs
- Join the leaders in IPC
- Market Your Business

Learn more about IPC membership and apply online at www.ipc.org/membership or contact the Member Success team at membership@ipc.org.